1 2 3	Safety of Autologous Stem Cell Transplantation in Patients with Known HTLV-1/2 Infection: A Case Series of 4 Patients
4 5 6 7	By Vishal K. Gupta, MD1; Paul S. White, MD2; Dina Brauneis, NP2; Anthony C. Shelton, RN2; Karen Quillen2, MD2; Vaishali Sanchorawala, MD2; Shayna Sarosiek, MD2; J. Mark Sloan, MD2
8 9	 Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
10 11 12 13	 Stem Cell Transplant Program, Section of Hematology and Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
14 15	Article Type: Correspondence
16	
17	Conflicts of Interest: VKG, PSW, DB, ACS, KQ, SS, JMS have no conflicts of interest to
18	disclose. VS receives research support from Takeda, Celgene, Prothena, Janssen; she is
19	on the scientific advisory board for Proclara, Caleum.
20 21 22 23 24 25 26 27 28 29 30 31 32	Corresponding author: J. Mark Sloan 830 Harrison Ave, 3rd Floor, Suite 3200 Boston, MA 02118 Email: mark.sloan@bmc.org Phone: 617-638-6428 Fax: 617-638-5756
33	
34	
35	
36	

37	Human T-cell Lymphotropic Virus type 1 and 2 (HTLV-1/2) are delta retroviruses
38	endemic to the Caribbean and Japan.1 HTLV-1 is known to cause two distinct and
39	devastating diseases, adult T-cell leukemia-lymphoma (ATLL) and tropical spastic
40	paraparesis/HTLV-1 associated myelopathy (HAM).2 The rate of progression to ATLL
41	occurs in less than 5% of HTLV-1 infected individuals. In addition, the latency from
42	infection to disease manifestation is on the order of decades.3
43	
44	The approach to autologous stem cell transplantation (AutoSCT) in immunosuppressed
45	individuals has evolved significantly over the past several years. Historically, patients
46	with HIV infection rarely underwent autologous transplantation due to concern for
47	opportunistic infections. More recently, this population is routinely transplanted and
48	included in clinical trials because outcomes in well-selected patients with HIV
49	approximate those from a population without HIV.4
50	
51	Patients who test positive for HTLV-1/2 during evaluation for AutoSCT are at risk for
52	complications due to virus re-activation and clinical disease during the transplant process
53	and immunological recovery. Studies on the association between immunosuppression and
54	development of HAM or ATLL in humans infected with HTLV-1/2 are sparse and have
55	resulted in mixed findings.5-10 This is the first case series to document outcomes of this
56	population in AutoSCT. It describes four patients who tested positive for HTLV-1/2 and
57	who underwent AutoSCT without opportunistic infections, development of HAM or
58	ATLL.
50	

59

60	Patients were identified retrospectively through a query of the clinical data warehouse at
61	Boston Medical Center. Approval for this study was obtained by the Institutional Review
62	Board of Boston Medical Center in accordance with federal regulations and the
63	Declaration of Helsinki. Cases were included if patients tested positive for serum HTLV-
64	1/2 IgG with confirmatory testing by line immunoassay, and then underwent AutoSCT.
65	Patients were assessed at the frequency indicated by their respective disease conditions
66	for which they underwent AutoSCT and were observed for clinical signs and symptoms
67	of ATLL or HAM.
68	
69	Four patients were identified in the chart review. Demographic and disease characteristics
70	are described in Table 1. Two patients tested positive for HTLV-1 antibody and two
71	tested positive for HTLV-2 antibody. The median follow-up for these patients from date
72	of transplantation was 22.4 months (range, 7.3-38.6). Median time to neutrophil and
73	platelet engraftment was 9.5 days (range, 8-10) and 10 days (range, 9-14) respectively.
74	None of these four patients developed complications related to HTLV-1/2 infection
75	during the follow-up period. One patient died on day + 221 due to a recurrence of
76	cholangiocarcinoma leading to liver failure, and the other three remained alive at the time
77	of last follow-up.
78	
79	The present case series provides support for the relative safety of AutoSCT in patients

who are asymptomatic carriers of HTLV-1/2. It also suggests that engraftment times for
HTLV-infected individuals are comparable to engraftment times for those individuals not
infected with HTLV-1/2.

84	In the bone marrow transplant literature, there is one report of HTLV-1 associated
85	malignancy after autologous stem cell transplantation.11 In this report, onset of ATLL
86	occurred fifteen months following AutoSCT for anaplastic large cell lymphoma (ALCL).
87	Polymerase chain reaction (PCR)-based analyses suggested that a small population of the
88	T-cell clone may have existed in the lymphoid tissue at the time of ALCL diagnosis and
89	proliferated over time, however given that it was not the dominant clone, the patient was
90	managed as ALCL.
91	
92	The remainder of studies that describe the development of ATLL or HAM in an
93	immunosuppressed patient population exist as case reports and case series in renal
94	transplant recipients. One recent and notable case series showed the development of
95	HAM in four out of ten renal transplant recipients where the host had been HTLV-1
96	negative and the donor was HTLV-1 positive.12 There were zero out of thirty renal
97	transplant recipients who had previously tested positive for HTLV-1 who developed
98	disease from HTLV-1 positive donors. This may be because the HTLV-1 positive
99	recipients had pre-existing immunity prior to undergoing renal transplantation and
100	immunosuppression, whereas the HTLV-1 negative recipients became infected while
101	immunocompromised. It is therefore possible that the patients in the present case series
102	had already developed immunity which served to protect them during and after AutoSCT.
103	
104	In conclusion, this report documents favorable outcomes of HTLV-1/2-infected patients
105	who undergo AutoSCT. One limitation to this study was that viral loads were not

- 106 assessed before or after transplantation. Known risk factors for progression from HTLV-
- 107 1/2 infection to clinical disease include high proviral load, advanced age, and family
- 108 history of ATLL.13 It would therefore be reasonable to consider these risk factors while
- 109 counseling patients on the relative benefits of stem cell transplantation in patients positive
- 110 for HTLV-1/2. Larger studies are needed to define specific risk factors for the
- 111 development of ATLL and other complications of HTLV-1/2 infection in the setting of
- 112 AutoSCT.
- 113

¹ Gessain A, Olivier C. Epidemiological aspects and world distribution of HTLV-1 infection. *Front Microbiol*. 2012;3:388.

² Mahieux R, Gessain A. HTLV-1 and associated adult T-cell leukemia/lymphoma. *Rev Clin Exp Hematol.* 2003;7(4):336-361.

³ Dittus C, Sloan JM. Adult T-cell leukemia/lymphoma: a problem abroad and at home. *Hematology/Oncology Clinics*. 2017;31(2):255-272.

⁴ Alvarnas JC, Le Rademacher J, Wang Y, et al. Autologous hematopoietic cell transplantation for HIV-related lymphoma: results of the BMT CTN 0803/AMC 071 trial. *Blood*. 2016;128:1050–1058.

⁵ Williams NP, Buchner LM, Shah DJ, Williams W, et al. Adult T-cell leukemia/lymphoma in a renal transplant recipient: an opportunistic occurrence. *Am J Nephrol.* 1994;14(3):226-229.

⁶ Jenks PJ, Barrett WY, Raftery MJ, et al. Development of human T-cell lymphotropic virus type I-associated adult T-cell leukemia/lymphoma during immunosuppressive treatment following renal transplantation. *Clin Infect Dis.* 1995;21(4):992-993.

7 Tsurumi H, Tani K, Tsuruta T, et al. Adult T-cell leukemia developing during immunosuppressivetreatment in a renal transplant recipient. *Am J Hematol*. 1992;41(4):292-294.

⁸ Ljungman P, Lawler M, Asjö B, et al. Infection of donor lymphocytes with human T lymphotropic virus type 1 (HTLV-I) following allogeneic bone marrow transplantation for HTLV-I positive adult T-cell leukaemia. *Br J Haematol*. 1994;88(2):403-405.

9 Tamaki H, Matsuoka M. Donor-derived T-cell leukemia after bone marrow transplantation. *N Engl J Med.* 2006;354(16):1758-1759.

¹⁰ Nakamura N, Tamaru S, Ohshima K, et al. Prognosis of HTLV-I-positive renal transplant recipients. *Transplant Proc.* 2005;37(4):1779-1782

¹¹ Tokunaga M, Yoshida N, Nakano N, et al. Detection of an early adult T-cell leukemialymphoma clone in lymph nodes with anaplastic lymphoma kinase-negative anaplastic large cell lymphoma involvement. Cancer genetics. 2016 Apr 1;209(4):138-42.

¹² Yamauchi J, Yamano Y, Yuzawa K. Risk of Human T-Cell Leukemia Virus Type 1 Infection in Kidney Transplantation. *N Engl J Med.* 2019;380(3):296-8.

¹³ Iwanaga M, Watanabe T, Utsunomiya A, et al. Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan. *Blood*. 2010;116(8):1211-9.